Linear Time Algorithm for Update Games
DIMAP Seminar
University of Warwick, UK
25 April 2017

Carlo Comin
On a joint ongoing work with Romeo Rizzi

University of Verona, Italy
An arena $\Gamma = (V, A, \langle V_\square, V_\bigcirc \rangle)$ is a finite directed graph $G^\Gamma = (V, A)$ whose vertices are divided into two classes, i.e., $V = V_\square \cup V_\bigcirc$.

$G^\Gamma = (V, A)$:
- has no sink vertices;
- has no loops nor parallel arcs;
- is not required to be a bipartite graph on colour classes V_\square and V_\bigcirc.
Infinite Pebble Games

Game

A game on $\Gamma = (V, A, \langle V\square, V\bigcirc \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ...
A *game* on $\Gamma = (V, A, \langle V^{\square}, V^{\bigcirc} \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ...
A game on $\Gamma = (V, A, \langle V\Box, V\circ \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\Box, \circ\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
A game on $\Gamma = (V, A, \langle V_\square, V_\bigcirc \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum...
A game on $\Gamma = (V, A, \langle V_{\square}, V_{\circ} \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \circ\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum...
A game on $\Gamma = (V, A, \langle V\Box, V\Diamond \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\Box, \Diamond\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ...
A game on $\Gamma = (V, A, \langle V_\square, V_\bigcirc \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ...
A *game* on $\Gamma = (V, A, \langle V_{\square}, V_{\bigcirc} \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\square, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ...
A game on $\Gamma = (V, A, \langle V_\Box, V_\bigcirc \rangle)$ is played for infinitely many rounds by moving a pebble along the arcs, from one vertex to an adjacent one.

- Initially, the pebble is located on some $v_s \in V$; say, $v_s = a$;
- At each round, if the pebble is currently on $v \in V_p$, for some $p \in \{\Box, \bigcirc\}$, Player p chooses an arc $(v, v') \in A$; say, $(v, v') = (a, b)$;
- and then the next round starts with the pebble on v';
- repeat rounds ad infinitum ... $\text{(abac)}^+ \text{ ...}$
Infinite Pebble Games

Play, Strategy, Outcome Play

- A **play** is an infinite path \(\pi = v_0v_1v_2 \ldots \in V^\omega \) such that \((v_i, v_{i+1}) \in A\);
- A **strategy** for Player \(p\), where \(p \in \{\Box, \bigcirc\}\), is a map,

 \[
 \sigma_p : V^* \times V_p \rightarrow V, \text{ such that } (v, \sigma_p(\pi', v)) \in A,
 \]

 for every finite path \(\pi'v\) in \(G^\Gamma\) where \(v \in V_i\);
- Given two strategies \(\sigma_{\Box} \in \Sigma^\Gamma_{\Box}\) and \(\sigma_{\bigcirc} \in \Sigma^\Gamma_{\bigcirc}\), and some \(v_s \in V\), the **outcome** play,

 \[
 \rho^\Gamma(v_s, \sigma_{\Box}, \sigma_{\bigcirc}),
 \]

 is the (unique) play that starts at \(v_s\) and is consistent with both \(\sigma_{\Box}, \sigma_{\bigcirc}\).
Winning Condition

- Let $\text{Inf}(\pi)$ be the set of all and only those vertices $v \in V$ that appear infinitely often in the play π,

$$\text{Inf}(\pi) \triangleq \{ v \in V \mid \forall j \in \mathbb{N} \exists k \in \mathbb{N}, k > j \text{ such that } v_k = v \}.$$

- Player \square wins the Update Game Γ iff all vertices are visited infinitely often,

$$\exists \sigma_\square \in \Sigma_\square \forall \sigma_\circ \in \Sigma_\circ \forall v_s \in V \text{ Inf}(\rho_\Gamma(v_s, \sigma_\square, \sigma_\circ)) = V.$$
Main facts

- Firstly studied by:
 - [Dinneen, Khoussainov, Update Networks and Their Routing Strategies. WG 2000];
- \(O(mn)\) time algorithm [Dinneen, Khoussainov. WG 2000];
- Routing strategies are not positional.
- Basic subtask for solving Explicit Müller Games in polynomial time, as in:
 - [Horn, Explicit Müller Games are PTIME. FSTTCS 2008];
Update Games

□-Attractor

\[\text{Reach}^\square(v, 0) \triangleq \{v\}, \forall v \in V; \]
\[\text{Reach}^\square(v, i) \triangleq \{u \in V\big| \exists (u, u') \in A \ u' \in \bigcup_{j=0}^{i-1} \text{Reach}^\square(v, j)\} \cup \]
\[\bigcup \{u \in V_\big| \forall (u, u') \in A \ u' \in \bigcup_{j=0}^{i-1} \text{Reach}^\square(v, j)\}, \forall v \in V \forall i > 0. \]
\[\text{Attr}^\square(v) \triangleq \bigcup_{i \geq 0} \text{Reach}^\square(v, i). \]

\(O(mn)\) Time Algorithm [Dinneen, Khoussainov. WG 2000]

- Compute \(\text{Attr}^\square(v)\) for each \(v \in V\);
- If \(\exists v \in V \text{Attr}^\square(v) \neq V\), return NO;
- Otherwise, return YES.
Linear Time: what can be done?

Note

If G^Γ is not *strongly-connected* as a graph, then return **NO**.

Alternating Strongly Connected Components

Say $u, v \in V$ are \(a\)-strongly-connected if $u \in \text{Attr}^\Gamma_{\square}(v) \land v \in \text{Attr}^\Gamma_{\square}(u)$.

\[
\text{Attr}^\Gamma_{\square}(a) = \{a, b, c\}, \text{Attr}^\Gamma_{\square}(b) = \{b\}, \text{Attr}^\Gamma_{\square}(c) = \{a, c\}.
\]
Linear Time: what can be done?

Note

If G^Γ is not *strongly-connected* as a graph, then return *NO*.

Alternating Strongly Connected Components

Say $u, v \in V$ are *a-strongly-connected* if $u \in \text{Attr}^\Gamma_{\square}(v) \land v \in \text{Attr}^\Gamma_{\square}(u)$.

Example

\[
\begin{align*}
\text{Attr}^\Gamma_{\square}(a) &= \{a, b, c\}, \\
\text{Attr}^\Gamma_{\square}(b) &= \{b\}, \\
\text{Attr}^\Gamma_{\square}(c) &= \{a, c\}.
\end{align*}
\]
Linear Time: what can be done?

Note
If G^Γ is not strongly-connected as a graph, then return NO.

Alternating Strongly Connected Components
Say $u, v \in V$ are a-strongly-connected if $u \in \text{Attr}^\Gamma(v) \land v \in \text{Attr}^\Gamma(u)$.

$D_{a-scC} = \left\{ \{a, c\}, \{b\} \right\}$.
Linear Time: what can be done?

Note

If G^Γ is not strongly-connected as a graph, then return NO.

Alternating Strongly Connected Components

Say $u, v \in V$ are a-strongly-connected if $u \in \text{Attr}^\Gamma(v) \land v \in \text{Attr}^\Gamma(u)$.

Deciding Update Games (Sketch)

If Γ is a-strongly-connected, i.e., $D_{a\text{-scc}} = \{V\}$, return YES; otherwise, NO.
Figure: An arena Γ (a), and a rev-palm-tree (b), generated by rev-DFS on G^Γ (c).
If we run a DFS on G^Γ, then ...

- Arcs can be partitioned into: tree, fronds, cross (and forward).
- If G^Γ is strongly-connected, the rev-palm-tree is a spanning tree.
- Each vertex is reachable in G^Γ from any of its descendants,
 - however, e.g. $\text{Attr}^\Gamma(B) = \{B\}$; thus, rev-palm-trees are not (yet) certificates of a-reachability.
Safe-Reachability

Given an arena Γ on vertex set V, let $U \subseteq V$ and $u, v \in U$. We say that v is U-safe-reachable from u (i.e. $u \xrightarrow{U} v$) when $\exists \sigma_\Box \in \Sigma_\Box^\Gamma$ such that $\forall \sigma_\bigcirc \in \Sigma_\bigcirc^\Gamma$:

- [a-reachability] $v \in \Occ(\rho^\Gamma(u, \sigma_\Box, \sigma_\bigcirc))$; and,
- [safety] $\Occ(\rho^\Gamma(u, \sigma_\Box, \sigma_\bigcirc, v)) \subseteq U$.

where for any finite (or infinite) path $p \in V^*$ (or $p \in V^\omega$), the occurrence set of p is:

$$\Occ(p) \triangleq \{ v \in V \mid v \text{ appears in } p \};$$

and $\rho^\Gamma(u, \sigma_\Box, \sigma_\bigcirc, v)$ is the shortest prefix of $\rho^\Gamma(u, \sigma_\Box, \sigma_\bigcirc)$ ending with v.

Alternating Depth-First-Search (a-DFS)

Perform a DFS on the arena Γ in such a way as to always preserve V_T-safe-reachability within the palm-tree T that is under construction. (Invariant Property)

- i.e., $v \in V_\bigcirc$ joins the palm-tree T as soon as all of its outgoing neighbours $v' \in N^\text{out}_v$ have already did it; and its parent π_v is the LCA of N^out_v in T.
Given an arena Γ on vertex set V, let $U \subseteq V$ and $u, v \in U$. We say that v is U-safe-reachable from u (i.e. $u \overset{U}{\sim} v$) when $\exists \sigma_\square \in \Sigma_\square^{\Gamma}$ such that $\forall \sigma_\bigcirc \in \Sigma_\bigcirc^{\Gamma}$:

[a-reachability] $v \in \overline{\text{Occ}}(\rho_\Gamma(u, \sigma_\square, \sigma_\bigcirc))$; and,

[safety] $\overline{\text{Occ}}(\rho_\Gamma(u, \sigma_\square, \sigma_\bigcirc, v)) \subseteq U$.

where for any finite (or infinite) path $p \in V^*$ (or $p \in V^\omega$), the occurrence set of p is:

$$\overline{\text{Occ}}(p) \triangleq \{v \in V \mid v \text{ appears in } p\};$$

and $\rho_\Gamma(u, \sigma_\square, \sigma_\bigcirc, v)$ is the shortest prefix of $\rho_\Gamma(u, \sigma_\square, \sigma_\bigcirc)$ ending with v.

Alternating Depth-First-Search (a-DFS)

Perform a DFS on the arena Γ in such a way as to always preserve V_T-safe-reachability within the palm-tree T that is under construction. (Invariant Property)

- *i.e.,* $v \in V_\bigcirc$ joins the palm-tree T as soon as all of its outgoing neighbours $v' \in N_v^{\text{out}}$ have already did it; and its parent π_v is the LCA of N_v^{out} in T.

Linear Time Algorithm for Update Games

Carlo Comin
Alternating Depth-First-Search: an example

For every \(v \in V \), \(\text{idx}[v] \in \mathbb{N} \), \(\text{ready}_\text{St}[v] \subseteq V_\circ \); and, for every \(u \in V_\circ \), \(c[u] \in \mathbb{N} \).

Figure: An arena (a), and an a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every \(v \in V \), \(\mathbf{idx}[v] \in \mathbb{N}, \mathbf{ready}_\text{St}[v] \subseteq V_\circ \); and, for every \(u \in V_\circ \), \(c[u] \in \mathbb{N} \).

(a) An arena \(\Gamma \).

(b) The a-palm-tree generated by a-DFS rooted at \(A \), with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and an a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_\text{St}[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{id}x[v] \in \mathbb{N}$, $\text{ready}_\text{St}[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every \(v \in V \), \(\text{idx}[v] \in \mathbb{N} \), \(\text{ready}_\text{St}[v] \subseteq V_\circ \); and, for every \(u \in V_\circ \), \(c[u] \in \mathbb{N} \).

(a) An arena \(\Gamma \).

(b) The a-palm-tree generated by a-DFS rooted at \(A \), with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).

Linear Time Algorithm for Update Games
Carlo Comin
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}, \text{ready}_\text{St}[v] \subseteq V_\triangledown$; and, for every $u \in V_\triangledown$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

1. (B, A) 7. (A, G')
2. (D, B) 8. (F, G')
3. (E, D) 9. (C, B)
4. (C, E) 10. (H, A)
5. (F, E) 11. (C, H)
6. (G, D) 12. (F, H)

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

1. (B, A) 7. (A, G')
2. (D, B) 8. (F, G')
3. (E, D) 9. (C, B)
4. (C, E) 10. (H, A)
5. (F, E) 11. (C, H)
6. (G, D) 12. (F, H)

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_\bigotimes$; and, for every $u \in V_\bigotimes$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_\text{St}[v] \subseteq V_{\circ}$; and, for every $u \in V_{\circ}$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs' exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_\text{St}[v] \subseteq V_\circ$; and, for every $u \in V_\circ$, $c[u] \in \mathbb{N}$.

(a) An arena Γ. (b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs. (c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_\text{St}[v] \subseteq V_\bigcirc$; and, for every $u \in V_\bigcirc$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_\odot$; and, for every $u \in V_\odot$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

(c) The order of arcs' exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every \(v \in V \), \(\text{idx}[v] \in \mathbb{N} \), \(\text{ready}_St[v] \subseteq V_\bigcirc \); and, for every \(u \in V_\bigcirc \), \(c[u] \in \mathbb{N} \).

(a) An arena \(\Gamma \).

(b) The a-palm-tree generated by a-DFS rooted at \(A \), with indices of vertices and labelled arcs.

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Alternating Depth-First-Search: an example

For every $v \in V$, $\text{idx}[v] \in \mathbb{N}$, $\text{ready}_St[v] \subseteq V_{\bigcirc}$; and, for every $u \in V_{\bigcirc}$, $c[u] \in \mathbb{N}$.

(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.

1. (B, A)
2. (D, B)
3. (E, D)
4. (C, E)
5. (F, E)
6. (G, D)
7. (A, G)
8. (F, G)
9. (C, B)
10. (H, A)
11. (C, H)
12. (F, H)

(c) The order of arcs’ exploration.

Figure: An arena (a), and a a-palm-tree (b), generated by a-DFS (c).
Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest \mathcal{D} on V, i.e., init $\mathcal{D}.\text{MakeSet}(v) \ \forall v \in V$;
- For all $v \in V_\text{O}$, the following invariant is maintained during the a-DFS:

$$\text{low}_\text{ready}[v] = \min \{ \text{idx}[u] \mid u \in N^\text{out}_\text{A}(v) \}.$$

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^\text{in}(v) \cup \text{ready}_\text{St}[v]$, soon after that call, execute $\mathcal{D}.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_\text{O}$:
 1. let low_v be the unique $x \in N^\text{out}(u)$ with $\text{idx}[x] = \text{low}_\text{ready}[u]$,
 2. let $\gamma \leftarrow \mathcal{D}.\text{Find}(\text{low}_v)$,
 3. if γ is still active, execute $\text{ready}_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N^\text{out}(u)$ exists in \mathcal{T} and it is really γ.

Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest D on V, i.e., $\text{init } D.\text{MakeSet}(v) \forall v \in V$;
- For all $v \in V$, the following invariant is maintained during the a-DFS:

 $$\text{low_ready}[v] = \min \{ \text{idx}[u] \mid u \in N_{A}^{\text{out}}(v) \}.$$

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^{\text{in}}(v) \cup \text{ready_St}[v]$, soon after that call, execute $D.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V$:
 1. let low_v be the unique $x \in N_{A}^{\text{out}}(u)$ with $\text{idx}[x] = \text{low_ready}[u]$,
 2. let $\gamma \leftarrow D.\text{Find}(\text{low_v})$;
 3. if γ is still active, execute $\text{ready_St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N_{A}^{\text{out}}(u)$ exists in T and it is really γ.
Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest D on V, i.e., $\text{init } D.\text{MakeSet}(v) \forall v \in V$;
- For all $v \in V_\infty$, the following invariant is maintained during the a-DFS:

$$\text{low_ready}[v] = \min \{\text{idx}[u] \mid u \in N^{\text{out}}_A(v)\}.$$

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^{\text{in}}(v) \cup \text{ready_St}[v]$, soon after that call, execute $D.\text{Union}(u, v)$.

- When the condition $c[u] = 0$ is met, for some $u \in V_\infty$:
 1. let low_v be the unique $x \in N^{\text{out}}(u)$ with $\text{idx}[x] = \text{low_ready}[u]$,
 2. let $\gamma \leftarrow D.\text{Find}(\text{low}_v)$;
 3. if γ is still active, execute $\text{ready_St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N^{\text{out}}(u)$ exists in T and it is really γ.
Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest \mathcal{D} on V, i.e., init $\mathcal{D}.\text{MakeSet}(v) \; \forall v \in V$;
- For all $v \in V_\circ$, the following invariant is maintained during the a-DFS:

$$\text{low}_\text{ready}[v] = \min \{ \text{idx}[u] \mid u \in N_A^{\text{out}}(v) \}.$$

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^{\text{in}}(v) \cup \text{ready}_\text{St}[v]$, soon after that call, execute $\mathcal{D}.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_\circ$:

1. let low_v be the unique $x \in N^{\text{out}}(u)$ with $\text{idx}[x] = \text{low}_\text{ready}[u]$,
2. let $\gamma \leftarrow \mathcal{D}.\text{Find}(\text{low}_v)$;
3. if γ is still active, execute $\text{ready}_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N^{\text{out}}(u)$ exists in T and it is really γ.

Linear Time Algorithm for Update Games

Carlo Comin

27/41
Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest D on V, i.e., $\text{init } D.\text{MakeSet}(v) \ \forall v \in V$;
- For all $v \in V_\circ$, the following invariant is maintained during the a-DFS:

 \[\text{low}_\text{ready}[v] = \min \{ \text{idx}[u] \mid u \in N^\text{out}_A(v) \} \]

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^\text{in}(v) \cup \text{ready}_\text{St}[v]$, soon after that call, execute $D.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_\circ$:
 1. let low_u be the unique $x \in N^\text{out}(u)$ with $\text{idx}[x] = \text{low}_\text{ready}[u]$,
 2. let $\gamma \leftarrow D.\text{Find}(\text{low}_u)$;
 3. if γ is still active, execute $\text{ready}_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N^\text{out}(u)$ exists in T and it is really γ.
Least Common Ancestors

To compute **Least Common Ancestors**:
- We have a Disjoint Sets Forest D on V, i.e., \(\text{init } D.\text{MakeSet}(v) \ \forall v \in V \);
- For all $v \in V_\circ$, the following invariant is maintained during the a-DFS:
 \[
 \text{low}_\text{ready}[v] = \min \{ \text{idx}[u] \mid u \in N_\text{out}(v) \}.
 \]
- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^\text{in}(v) \cup \text{ready}_\text{St}[v]$, soon after that call, execute $D.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_\circ$:
 1. let low_u be the unique $x \in N_\text{out}(u)$ with $\text{idx}[x] = \text{low}_\text{ready}[u]$,
 2. let $\gamma \leftarrow D.\text{Find}(\text{low}_u)$;
 3. if γ is still active, execute $\text{ready}_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N_\text{out}(u)$ exists in T and it is really γ.

Linear Time Algorithm for Update Games

Carlo Comin
Least Common Ancestors

To compute *Least Common Ancestors*:
▶ We have a Disjoint Sets Forest D on V, i.e., init $D.$MakeSet(v) $\forall v \in V$;
▶ For all $v \in V_\bigcirc$, the following invariant is maintained during the a-DFS:

$$\text{low_ready}[v] = \min\{\text{idx}[u] \mid u \in N_{\text{out}}^A(v)\}.$$

▶ Whenever the a-DFS makes a recursive call to visit some vertex $u \in N_{\text{in}}(v) \cup \text{ready_St}[v]$, soon after that call, execute $D.$Union(u, v).
▶ When the condition $c[u] = 0$ is met, for some $u \in V_\bigcirc$:
 1. let low$_v$ be the unique $x \in N_{\text{out}}^A(u)$ with $\text{idx}[x] = \text{low_ready}[u]$,
 2. let $\gamma \leftarrow D.$Find(low$_v$);
 3. if γ is still active, execute ready$_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N_{\text{out}}^A(u)$ exists in T and it is really γ.

Linear Time Algorithm for Update Games
Carlo Comin
To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest \mathcal{D} on V, i.e., $\text{init } \mathcal{D}.\text{MakeSet}(v) \quad \forall v \in V$;
- For all $v \in V_{\varnothing}$, the following invariant is maintained during the a-DFS:

$$\text{low}_\text{ready}[v] = \min \{ \text{idx}[u] \mid u \in N_{A}^{\text{out}}(v) \}.$$

- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N_{\text{in}}(v) \cup \text{ready}_\text{St}[v]$, soon after that call, execute $\mathcal{D}.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_{\varnothing}$:
 1. let low_v be the unique $x \in N_{\text{out}}(u)$ with $\text{idx}[x] = \text{low}_\text{ready}[u]$,
 2. let $\gamma \leftarrow \mathcal{D}.\text{Find}(\text{low}_v)$;
 3. if γ is still active, execute $\text{ready}_\text{St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N_{\text{out}}(u)$ exists in \mathcal{T} and it is really γ.

Linear Time Algorithm for Update Games

Carlo Comin 27/41
Least Common Ancestors

To compute *Least Common Ancestors*:

- We have a Disjoint Sets Forest \mathcal{D} on V, i.e., init $\mathcal{D}.\text{MakeSet}(v) \ \forall v \in V$;
- For all $v \in V_{\circ}$, the following invariant is maintained during the a-DFS:
 \[
 \text{low_ready}[v] = \min \{ \text{idx}[u] \mid u \in N_{A}^{\text{out}}(v) \}.
 \]
- Whenever the a-DFS makes a recursive call to visit some vertex $u \in N^{\text{in}}(v) \cup \text{ready_St}[v]$, soon after that call, execute $\mathcal{D}.\text{Union}(u, v)$.
- When the condition $c[u] = 0$ is met, for some $u \in V_{\circ}$:
 1. let low_v be the unique $x \in N_{\text{out}}^{\text{out}}(u)$ with $\text{idx}[x] = \text{low_ready}[u]$,
 2. let $\gamma \leftarrow \mathcal{D}.\text{Find}(\text{low_v})$;
 3. if γ is still active, execute $\text{ready_St}[\gamma].\text{push}(u)$.

Proposition

If γ is still active, the LCA of $N_{\text{out}}^{\text{out}}(u)$ exists in T and it is really γ.
Strong Post-Order Path-Compression Systems

Theorem (Loebl, Nesetril, 1997)

Let S be a strong post-order path compression system, then $|S| \leq 5n$.

Proposition

The sequence of path compressions performed by the a-DFS is a Loebl-Nesetril strong post-order path compression system.

- Then the a-DFS halts in linear time.
Theorem (Loebl, Nesetril, 1997)
Let S be a strong post-order path compression system, then $|S| \leq 5n$.

Proposition
The sequence of path compressions performed by the a-DFS is a Loebl-Nesetril strong post-order path compression system.
- Then the a-DFS halts in linear time.
Safe-Strongly-Connected Components

Safe-Strongly-Connectedness

Say $U \subseteq V$ is *safe-strongly-connected* (s-SC) when for every $(u, v) \in U \times U$

\[\sigma \sqsubseteq : u \overset{U}{\sim} v \text{ for some } \sigma \sqsubseteq \in \Sigma^\Gamma. \]

Safe-Strongly-Connected Components

Consider the following binary relation \sim_{s-$scc}$ on V:

\[\sim_{s$-$scc} \triangleq \left\{ (u, v) \in V \times V \mid \exists U \subseteq V \text{ s.t. } U \text{ is } s$-$SC \text{ and } u, v \in U \right\}. \]

- It holds that \sim_{s-$scc}$ is an equivalence relation on V.

Equivalence classes of \sim_{s-$scc}$ are *safe-strongly-connected components* of Γ.
s-SCC \subseteq a-SCC

\[D_{a\text{-scc}} = \left\{ \{a, c\}, \{b\} \right\}; \]

\[D_{s\text{-scc}} = \left\{ \{a\}, \{b\}, \{c\} \right\}. \]
s-SCC ⊆ a-SCC

\[D_{a-\text{scc}} = \left\{ \{a, c\}, \{b\} \right\}; \]

\[D_{s-\text{scc}} = \left\{ \{a\}, \{b\}, \{c\} \right\}. \]
Each s-SCC C induces a subtree T_C in one of the a-palm-trees constructed by the a-DFS.
(a) An arena Γ.

(b) The a-palm-tree generated by a-DFS rooted at A, with indices of vertices and labelled arcs.
(c) An arena Γ.

(d) The s-SCCs of Γ.
Subtrees, Roots, and LowLinks

- Each s-SCC C induces a subtree T_C in one of the a-palm-trees constructed by the a-DFS.
- The problem of computing the s-SCCs reduces to that of finding the roots of the s-SCCs in T, as the classical problem of finding the SCCs of a directed graph reduced to that of finding the roots of the SCCs.
(e) An arena Γ.

(f) The roots of the s-SCCs of Γ.
Subtrees, Roots, and LowLinks

- Each s-SCC C induces a subtree T_C in one of the a-palm-trees constructed by the a-DFS.

- The problem of computing the s-SCCs reduces to that of finding the roots of the s-SCCs in T, as the classical problem of finding the SCCs of a directed graph reduced to that of finding the roots of the SCCs.

- We have identified a simple test to determine if a vertex is the root of a s-SCCs. It is based on an a-lowlink indexing, similar to the lowlink calculation performed by Tarjan’s SCC algorithm.
 - i.e., $v \in V$ is the root of some s-SCCs of Γ iff $a\text{-lowlink}(v) = \text{idx}[v]$.
The a-lowlink\([v]\) is the smallest index of any vertex \(u\) which is in the same s-SCC as \(v\) and such that \(u\) can reach \(v\) by traversing: at most one frond or cross arc, and then zero or more tree arcs.
Procedure `compute-s-SCC(A)`

- **input**: An arena $A = (V, A, (V\circ, V\n))$.
- **output**: The s-SCC of A.

1. **foreach** $u \in V$ **do**
 1.1. `idx[u] ← +∞;`
 1.2. `a-lowlink[u] ← +∞;`
 1.3. `on_Stack[u] ← false;`
 1.4. `D.make_set(u);`
 1.5. `ready_Stack[u] ← ∅;`
 1.6. **if** $u \in V\circ$ **then**
 1.6.1. `low_ready[u] ← +∞;`
 1.6.2. `cnt[u] ← |N^\text{out}_A(u)|;`

2. `next_idx ← 1; St ← ∅;`
3. **foreach** $u \in V\n$ **do**
4. 4.1. **if** `idx[u] = +∞` **then**
5. 4.2. 4.1.1. `s-SCC-visit(u, A);`

6. **foreach** $u \in V\circ$ **do**
7. 6.1. **if** `idx[u] = +∞` **then**
8. 6.2. 6.1.1. `idx[u] ← next_idx;`
9. 6.3. `next_idx ← next_idx + 1;`
10. 6.4. `ta_lowlink[u] ← idx[u];`
Procedure \textit{s-SCC-visit}(v, A)
\begin{algorithmic}
 \Comment{input: A vertex $v \in V$.}
 \State $\text{idx}[v] \leftarrow \text{next_idx}$;
 \State $\text{a-lowlink}[v] \leftarrow \text{next_idx}$;
 \State $\text{next_idx} \leftarrow \text{next_idx} + 1$;
 \State $\text{St}.\text{push}(v)$;
 \State $\text{on}_{-}\text{Stack}[v] \leftarrow \text{true}$
 \Comment{Check the in-neighbourhood of v}
 \ForEach{$u \in \mathcal{N}_{A}^{\text{in}}(v)$}
 \If{$\text{idx}[u] = +\infty$}
 \If{$u \in V_{\square}$}
 \State $\text{s-SCC-visit}(u, A)$;
 \State $\text{a-lowlink}[v] \leftarrow \min(\text{a-lowlink}[v], \text{a-lowlink}[u])$;
 \State $\mathcal{D}.\text{Union}(u, v)$;
 \Else
 \State $\text{low_ready}[u] \leftarrow \min(\text{low_ready}[u], \text{idx}[v])$;
 \State $\text{cnt}[u] \leftarrow \text{cnt}[u] - 1$;
 \If{$\text{cnt}[u] = 0$}
 \State $\text{low_v} \leftarrow \text{the unique } x \text{ such that } \text{idx}[x] = \text{low_ready}[u]$;
 \State $\gamma \leftarrow \mathcal{D}.\text{find}(\text{low_v})$;
 \If{$\text{on}_{-}\text{Stack}[\gamma] = \text{true}$}
 \State $\text{ready_St}[\gamma].\text{push}(u)$;
 \EndIf
 \ElseIf{$\text{on}_{-}\text{Stack}[u] = \text{true}$}
 \State $\text{a-lowlink}[v] \leftarrow \min(\text{a-lowlink}[v], \text{idx}[u])$;
 \EndIf
 \EndIf
 \EndIf
 \EndFor
\end{algorithmic}
Deciding Update Games

If $C = V$, return YES; otherwise, NO.
Deciding Update Games

If $C = V$, return YES; otherwise, NO.
Thank you for the attention