Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games

A Singly-Exponential Time DC-Checking

Carlo Comin Romeo Rizzi

University of Trento University of Verona
Trento, Italy Verona, Italy

22nd International Symposium on
Temporal Representation and Reasoning
University of Kassel, Kassel, Germany
September 23, 2015
Simple Temporal Networks (STNs) [Dechter, Meiri, Pearl [3]]

- Represent a general framework for analyzing systems (conjunctions) of difference constraints on ordered pairs of temporal variables.
- An STN can be encoded by a weighted directed graph:
 - a node represents a time-point variable (time-point);
 - an arc represents a temporal distance constraint:
 - $u \rightarrow^a v$ stands for $v - u \leq a$, $a \in \mathbb{R}$;
 - $(v \leftarrow^a u$ stands for $v - u \geq a$).

Represented Constraints:

- $4 \leq A - D \leq 5$
- $6 \leq B - A \leq 7$
- $1 \leq C - A \leq 4$
- $-1 \leq B - C \leq 1$
- $1 \leq C - D \leq 3$
STN Consistency [Dechter, Meiri, Pearl [3]]

An STN $\langle G = (V, E), \ell \rangle$ is consistent if it admits a feasible scheduling function, i.e., we can assign a real value $s(v)$ to each time-point v, such that all constraints are satisfied:

$$\exists \ s : V \mapsto \mathbb{R} \ \text{such that:}$$

$$s(v) \leq s(u) + \ell(u,v) \quad \forall (u, v) \in E.$$

An STN is not consistent if it contains a negative cycle.

Represented Constraints:

$$\begin{align*}
4 &\leq A - D \leq 5 \\
6 &\leq B - A \leq 7 \\
1 &\leq C - A \leq 4 \\
-1 &\leq B - C \leq 1 \\
1 &\leq C - D \leq 3
\end{align*}$$
STN Consistency [Dechter, Meiri, Pearl [3]]

- An STN $\langle G = (V, E), \ell \rangle$ is consistent if it admits a feasible scheduling function, i.e., we can assign a real value $s(v)$ to each time-point v, such that all constraints are satisfied:
 \[\exists s : V \mapsto \mathbb{R} \text{ such that:} \]
 \[s(v) \leq s(u) + \ell(u, v) \quad \forall (u, v) \in E. \]

- An STN is not consistent if it contains a negative cycle.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi
The CSTN formalism extends STNs in that:

1. some of the nodes are called observation events and to each of them is associated a boolean variable, to be disclosed only at execution time;
2. labels (i.e. conjunctions over the literals) are attached to all nodes and constraints, to indicate the situations in which each of them is required.
The CSTN formalism extends STNs in that:

1. some of the nodes are called **observation events** and to each of them is associated a boolean variable, to be disclosed only at execution time;
2. **labels** (i.e. conjunctions over the literals) are attached to all nodes and constraints, to indicate the situations in which each of them is required.
Conditional Simple Temporal Networks: the Model

- The CSTN formalism extends STNs in that:
 1. some of the nodes are called **observation events** and to each of them is associated a boolean variable, to be disclosed only at execution time;
 2. **labels** (i.e. conjunctions over the literals) are attached to all nodes *and* constraints, to indicate the situations in which each of them is required.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A scenario s over a set P of boolean variables is a truth assignment:

$$s : P \rightarrow \{\top, \bot\}.$$
A scenario \(s \) over a set \(P \) of boolean variables is a truth assignment:

\[s : P \rightarrow \{\top, \bot\}. \]

Let \(s(p) = \top \) and \(s(q) = \bot \)...

![Diagram](https://via.placeholder.com/150)
A **scenario** s over a set P of boolean variables is a truth assignment:

$$s : P \rightarrow \{\top, \bot\}.$$
A **scenario** s over a set P of boolean variables is a truth assignment

$$s : P \rightarrow \{\top, \bot\}.$$

Let $s(p) = \top$ and $s(q) = \bot$, then Γ becomes:

![Diagram](image-url)
The restriction Γ^+_s.

- The **restriction** of V and A w.r.t. the scenario $s \in \Sigma_P$ are:
 - $V^+_s \triangleq \{ v \in V \mid s(L(v)) = T \}$;
 - $A^+_s \triangleq \{ \langle u, v, w \rangle \mid \exists \ell \langle v - u \leq w, \ell \rangle \in A, s(\ell) = T \}$.

- The **restriction** of Γ w.r.t. s is the STN $\Gamma^+_s \triangleq \langle V^+_s, A^+_s \rangle$.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A scheduling for a subset of events $U \subseteq V$ is a function:

$$\phi : U \rightarrow \mathbb{R},$$

that assigns a real number to each event in U.
A scheduling for a subset of events $U \subseteq V$ is a function:

$$\phi : U \rightarrow \mathbb{R},$$

that assigns a real number to each event in U.

![Diagram of Conditional Simple Temporal Networks]
A **scheduling** for a subset of events \(U \subseteq V \) is a function:

\[
\phi : U \rightarrow \mathbb{R},
\]

that assigns a real number to each event in \(U \).
A scheduling for a subset of events $U \subseteq V$ is a function:

$$\phi : U \rightarrow \mathbb{R},$$

that assigns a real number to each event in U.

![Diagram with conditional edges and labels]
CSTNs: Consistency

CSTN’s Consistencies

Three notions of consistency arise for CSTNs: *weak*, *strong*, and...

dynamic consistency.
CSTNs: Consistency

CSTN’s Dynamic Consistency

Dynamic Consistency (DC) requires the existence of conditional plans where *decisions* about precise timing of actions are *postponed until exec. time*, but it guarantees that all the relevant constraints will be ultimately satisfied.
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$,

\[
\begin{align*}
\phi(A) &= 0, \\
A &\rightarrow B, \\
B &\rightarrow C, \\
C &\rightarrow A.
\end{align*}
\]
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$,

\[\begin{align*}
A & \rightarrow 0, \quad 3, p \land \neg q \\
B & \rightarrow 10, \quad -10 \\
C & \rightarrow 2, q \\
O_p & \rightarrow 5, 0 \\
O_q & \rightarrow 9, 0
\end{align*} \]

1, $\neg p$
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$,

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
An example of Dynamic execution for the CSTN \(\Gamma \).

Let \(\phi(A) = 0 \), \(\phi(O_p) = 1 \), \(s(p) = \top \),
An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$, $\phi(O_q) = 2$,

\[
\begin{align*}
A & \xrightarrow{0} B \\
& \xvdash 3, \neg q \\
& \xrightarrow{5} 0 \\
& \xrightarrow{9} 0 \\
C & \xleftarrow{10} A \\
& \xrightarrow{10} 2, q \\
& \xleftarrow{2} 2 \\
& \xleftarrow{q?} O_q
\end{align*}
\]
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$, $\phi(O_q) = 2$, $s(q) = \bot$.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$, $\phi(O_q) = 2$, $s(q) = \bot$,

A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi
An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$, $\phi(O_q) = 2$, $s(q) = \bot$, $\phi(B) = 3$.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
CSTNs: Dynamic Consistency

An example of Dynamic execution for the CSTN Γ.

Let $\phi(A) = 0$, $\phi(O_p) = 1$, $s(p) = \top$, $\phi(O_q) = 2$, $s(q) = \bot$, $\phi(B) = 3$, $\phi(C') = 10$.
An **Execution Strategy** for Γ is a mapping $\sigma : \Sigma_P \rightarrow \Phi_V$ such that, for any scenario $s \in \Sigma_P$, the domain of the scheduling $\sigma(s) \in \Phi_V$ is V_s^+.

\[
\begin{align*}
\phi(A) &= 0 \\
\phi(O_p) &= 1 \\
\phi(O_q) &= 2 \\
\phi(B) &= 8 \\
\phi(C) &= 10 \\
\phi(O_q) &= 9 \\
\phi(C) &= 10
\end{align*}
\]
We say that $\sigma \in S_\Gamma$ is a **viable** execution strategy if, for each scenario $s \in \Sigma_P$, the scheduling $\sigma(s) \in \Phi_V$ is **feasible** for the STN Γ_{s+}^Γ.

\[
\begin{align*}
\phi(A) &= 0 \\
\phi(O_p) &= 1 \\
\phi(O_q) &= 2 \\
\phi(B) &= 8 \\
\phi(C) &= 10
\end{align*}
\]
CSTNs: Dynamic Consistency

Difference Set $\Delta(s_1; s_2)$

Let $s_1, s_2 \in \Sigma_P$ be two scenarios. The set of observation events in $V_{s_1}^+ \cap O V$ at which s_1 and s_2 differ is denoted by $\Delta(s_1; s_2)$.
Difference Set $\Delta(s_1; s_2)$

Formally,

$$\Delta(s_1; s_2) \triangleq \{ O_p \in V_{s_1}^+ \cap O V \mid s_1(p) \neq s_2(p) \}.$$
Let $\sigma \in S_\Gamma$ be an execution strategy. Let $s \in \Sigma_P$ be a scenario. The **scheduling time** of $u \in V$ in $\sigma(s)$ is denoted $[\sigma(s)]_u = \phi(u)$ for fixed s, σ.
Let $\sigma \in S_T$ be an execution strategy. Then, σ is **dynamic** if and only if the following implication holds for every $s_1, s_2 \in \Sigma_P$, $u \in V_{s_1,s_2}^+$:

$$\left(\bigwedge_{v \in \Delta(s_1;s_2)} [\sigma(s_1)]_u \leq [\sigma(s_1)]_v \right) \Rightarrow [\sigma(s_1)]_u = [\sigma(s_2)]_u$$
Dynamic Consistency of CSTNs: Main Facts

- A CSTN Γ is **dynamically-consistent** if it admits a **viable and dynamic** execution strategy.
- DC-Checking was conjectured to be hard to assess [Tsamardinos, Vidal and Pollack, 2003]
- The best-so-far complexity upper-bound for the DC-Checking of CSTNs is **doubly-exponential time**.
 - Build an equivalent *Disjunctive Temporal Problem (DTP)* of size exponential in the input CSTN.
 - Apply to it an exponential time DTP’s algorithm to check its consistency.
 - Checking general DTPs is NP-complete. [Stergiou, Koubarakis, 2000]
Dynamic Consistency of CSTNs: Main Facts

- A CSTN Γ is **dynamically-consistent** if it admits a **viable and dynamic** execution strategy.
- DC-Checking was conjectured to be hard to assess [Tsamardinos, Vidal and Pollack, 2003]
- The best-so-far complexity upper-bound for the DC-Checking of CSTNs is **doubly-exponential time**.
 - Build an equivalent *Disjunctive Temporal Problem (DTP)* of size exponential in the input CSTN.
 - Apply to it an exponential time DTP’s algorithm to check its consistency.
 - Checking general DTPs is NP-complete. [Stergiou, Koubarakis, 2000]
Dynamic Consistency of CSTNs: Main Facts

- A CSTN Γ is **dynamically-consistent** if it admits a **viable and dynamic** execution strategy.
- DC-Checking was conjectured to be hard to assess [Tsamardinos, Vidal and Pollack, 2003]
- The best-so-far complexity upper-bound for the DC-Checking of CSTNs is **doubly-exponential time**.
 - Build an equivalent *Disjunctive Temporal Problem (DTP)* of size exponential in the input CSTN.
 - Apply to it an exponential time DTP’s algorithm to check its consistency.
 - Checking general DTPs is NP-complete. [Stergiou, Koubarakis, 2000]
The questions we faced:

- **What is the computational complexity of Checking Dynamic-Consistency in CSTNs?**
 - Lower-Bound: n/a
 - Upper-Bound: 2-EXP [Tsamardinos, Vidal, Pollack, 2003]

- **Does there exist faster algorithms that can be used in practice?**
 - ... say, $|P| \sim 20$ and $|V| \sim 1000$;
 - or $|P| \sim 25$ and $|V| \sim 100$.
Main Results

Our Contribution:
- Lower-Bound: \(\text{coNP-hard} \).
- Upper-Bound: \(\text{NE} \cap \text{coNE} \cap \text{pseudo-E} \).

A (pseudo) Singly-Exponential Time DC-Checking for CSTNs.
- There exists an
 \[
 O(|\Sigma_P|^3|A|^2|V| + |\Sigma_P|^4|A||V|^2|P| + |\Sigma_P|^5|V|^3|P|) W
 \]
 \(\text{(pseudo) singly-exponential}\) time algorithm for checking DC on any input CSTN \(\Gamma = \langle V, A, L, O, O V, P \rangle \).
 - Here, \(W \triangleq \max_{a \in A} |w_a| \) and \(|\Sigma_P| \leq 2^{|P|} \).
- In particular, given any dynamically-consistent CSTN \(\Gamma \), the algorithm returns a viable and dynamic execution strategy.

(here above, \(\text{E} \) is deterministic singly-exponential time, \(\text{NE} \) is nondeterministic singly-exponential time)
Main Results

Checking DC of CSTNs via MPGs

Most importantly, we unveil a connection between the problem of checking **DC in CSTNs** and that of determining **Mean Payoff Games**.

- Recently, STNs have been generalized into **Hyper Temporal Networks** (HyTNs) [1, 2] by considering weighted directed hypergraphs, where each hyperarc models a *disjunctive* temporal constraint called **hyper-constraint**.
- The computational equivalence between checking the consistency of HyTNs and determining winning regions in (MPGs) was pointed out.
- The present work unveils that HyTNs and MPGs are a suitable underlying combinatorial model for the DC-Checking of CSTNs.
Main Results

ε-Dynamic Consistency and the Reaction Time $\hat{\epsilon}(\Gamma)$

- In order to analyze the algorithm, we introduce a novel and refined notion of dynamic-consistency, named ϵ-dynamic-consistency;
 - We provide a sharp lower bounding analysis of the critical value of the reaction time $\hat{\epsilon}(\Gamma)$ where the CSTN Γ transits from being, to not being, dynamically-consistent.
 - This clarifies the role of the reaction time $\hat{\epsilon}$ in the DC-checking of CSTNs.
Let us provide a sketch of the arguments...
Checking DC of CSTNs is coNP-hard

Sketch of coNP-hardness proof

We reduce 3-SAT to the complement of CSTN-DC.

\(\varphi(x_1, \ldots, x_n) = \bigwedge_{i=1}^{m} (\alpha_i \lor \beta_i \lor \gamma_i) \) is mapped to the following CSTN:
Let us recall Hyper Temporal Networks...
A more general arc constraint

A hypergraph \mathcal{H} is a pair (V, \mathcal{A}), where V is the set of nodes, and \mathcal{A} is the set of hyperarcs. Each hyperarc $A \in \mathcal{A}$ has a distinguished node t_A, called the tail of A, and a nonempty weighted set (H_A, w_A), where $H_A \subseteq V \setminus \{t_A\}$ contains the heads of A, and each head $v \in H_A$ is associated with a weight $w_A(v) \in \mathbb{R}$.
An HyTN $\mathcal{H} = (V, A)$ is consistent if it admits a feasible scheduling function, i.e., we can assign a real value $\phi(v)$ to each time-point v, such that each hyperarc constraint is satisfied:

$$\phi(t_A) \geq \min_{v \in H_A} \{\phi(v) - w_A(v)\} \quad \forall A \in A.$$ (1)
Theorem

The following propositions hold on HyTNs.

1. There exists an $O((|V| + |A|) m_A W)$ pseudo-polynomial time algorithm for checking HyTN-Consistency;

2. There exists an $O((|V| + |A|) m_A W)$ pseudo-polynomial time algorithm such that, given in input any consistent HyTN $\mathcal{H} = (V, A)$, it returns as output a feasible scheduling $\phi : V \rightarrow \mathbb{R}$ of \mathcal{H};

Here, $W \triangleq \max_{A \in A, v \in H_A} |w_A(v)|$.

The approach was shown to be robust by experimental evaluations [Comin, Posenato, Rizzi [2]], where (randomly generated) HyTNs of size up to $|V| \sim 10^6$ and $W \sim 10^3$ were solved.
Experimental Evaluation of the **HyTN** Algorithm

<table>
<thead>
<tr>
<th>n</th>
<th>μ (sec)</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \cdot 10^5$</td>
<td>0.83</td>
<td>8.64</td>
</tr>
<tr>
<td>$2 \cdot 10^5$</td>
<td>1.18</td>
<td>6.55</td>
</tr>
<tr>
<td>$3 \cdot 10^5$</td>
<td>1.80</td>
<td>9.46</td>
</tr>
<tr>
<td>$4 \cdot 10^5$</td>
<td>2.19</td>
<td>9.14</td>
</tr>
<tr>
<td>$5 \cdot 10^5$</td>
<td>2.42</td>
<td>6.06</td>
</tr>
<tr>
<td>$6 \cdot 10^5$</td>
<td>3.37</td>
<td>12.80</td>
</tr>
<tr>
<td>$7 \cdot 10^5$</td>
<td>3.68</td>
<td>8.77</td>
</tr>
<tr>
<td>$8 \cdot 10^5$</td>
<td>3.53</td>
<td>6.16</td>
</tr>
<tr>
<td>$9 \cdot 10^5$</td>
<td>4.24</td>
<td>7.95</td>
</tr>
<tr>
<td>$10 \cdot 10^5$</td>
<td>4.54</td>
<td>8.38</td>
</tr>
</tbody>
</table>

(a) Test 1 results.

(b) Graphical representation of the results.

Test1’s Data Set: 1000 HyTN per size, $\forall v \in V \ deg(v) = 3$, $W = 1000$.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma$ is ϵ-dynamically-consistent\}.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- (Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma$ is ϵ-dynamically-consistent\}.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- (Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma \text{ is } \epsilon\text{-dynamically-consistent}\}$.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- (Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma \text{ is } \epsilon\text{-dynamically-consistent}\}$.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- *(Bonus)* Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma$ is ϵ-dynamically-consistent\}.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- (Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1}|V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma \text{ is } \epsilon\text{-dynamically-consistent}\}$.
 - $\hat{\epsilon}(\Gamma)$ is the **reaction time** of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.

(Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$ is (almost) optimal.
Sketch of the reduction from CSTN-Dynamic-Consistency to HyTN-Consistency

Sketch of the reduction

- Introduce ϵ-dynamic-consistency.
- Prove that any execution strategy σ is dynamic iff σ is ϵ-dynamic for some real number $\epsilon \in (0, +\infty)$.
- Consider $\hat{\epsilon}(\Gamma) = \sup\{\epsilon \in \mathbb{R}_{>0} \mid \Gamma \text{ is } \epsilon\text{-dynamically-consistent}\}$.
 - $\hat{\epsilon}(\Gamma)$ is the reaction time of Γ.
- Prove that for any dynamically-consistent CSTN Γ, where V is the set of events and Σ_P is the set of scenarios, it holds $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$.
- Devise an algorithm for checking ϵ-dynamic-consistency by reducing that problem to the consistency checking of HyTNs.
- (Bonus) Prove that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$ is (almost) optimal.
\(\varepsilon \)-dynamic-consistency

Given any CSTN \(\langle V, A, L, O, O^V, P \rangle \) and any real number \(\varepsilon \in (0, +\infty) \), an execution strategy \(\sigma \in S_\Gamma \) is \(\varepsilon \)-dynamic if it satisfies all the \(H_\varepsilon \)-constraints, namely, for any two scenarios \(s_1, s_2 \in \Sigma_P \) and any event \(u \in V^+_{s_1,s_2} \), the execution strategy \(\sigma \) satisfies the following constraint, denoted \(H_\varepsilon(s_1; s_2; u) \):

\[
[\sigma(s_1)]_u \geq \min \left(\{[\sigma(s_2)]_u\} \cup \{[\sigma(s_1)]_v + \varepsilon \mid v \in \Delta(s_1; s_2)\} \right)
\]

We say that a CSTN \(\Gamma \) is \(\varepsilon \)-dynamically-consistent if it admits \(\sigma \in S_\Gamma \) which is both viable and \(\varepsilon \)-dynamic.
Lemma 1

If Γ is ϵ-dynamically-consistent, for some $\epsilon > 0$, then Γ is ϵ'-dynamically-consistent for every $\epsilon' \in (0, \epsilon]$.

ϵ-dynamic-consistency
Lemma 2

Let σ be a dynamic execution strategy for the CSTN Γ. Then, there exists a sufficiently small real number $\epsilon \in (0, +\infty)$ such that σ is ϵ-dynamic.
Lemma 3

Let σ be an ϵ-dynamic execution strategy for the CSTN Γ, for some $\epsilon \in (0, +\infty)$. Then, σ is dynamic.

\Rightarrow Dynamic-Consistency of CSTNs is expressible with Max-Plus (or Min-Plus) constraints.
Solving ϵ-dynamic-consistency: Expansion of a CSTN

Expansion $\langle V^\text{Ex}_\Gamma, \Lambda^\text{Ex}_\Gamma \rangle$

Let Γ be a CSTN $\langle V, A, L, O, OV, P \rangle$. Consider the distinct STNs $\langle V_s, A_s \rangle$, one for each scenario $s \in \Sigma_P$, defined as follows:

$$V_s \triangleq \{ v_s \mid v \in V_s^+ \} \quad \text{and} \quad A_s \triangleq \{ \langle u_s, v_s, w \rangle \mid \langle u, v, w \rangle \in A_s^+ \}.$$

We define the expansion $\langle V^\text{Ex}_\Gamma, \Lambda^\text{Ex}_\Gamma \rangle$ of Γ as follows:

$$\langle V^\text{Ex}_\Gamma, \Lambda^\text{Ex}_\Gamma \rangle \triangleq \left(\bigcup_{s \in \Sigma_P} V_s, \bigcup_{s \in \Sigma_P} A_s \right).$$
Solving ϵ-dynamic-consistency: Expansion of a CSTN

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
Solving ϵ-dynamic-consistency: Expansion of a CSTN

An excerpt of the expansion of the CSTN Γ with two scenarios s_1 and s_4.
Given any $\epsilon \in (0, +\infty)$ and any CSTN $\Gamma = \langle V, A, L, O, O^V, P \rangle$, a corresponding HyTN denoted by $H_\epsilon(\Gamma)$ can be defined as follows:

- For every scenarios $s_1, s_2 \in \Sigma_P$ and every event $u \in V^+_{s_1, s_2}$, define a hyperarc $\alpha = \alpha_\epsilon(s_1; s_2; u)$ as $\alpha_\epsilon(s_1; s_2; u) \triangleq \langle t_\alpha, H_\alpha, w_\alpha \rangle$, where:
 - $t_\alpha \triangleq u_{s_1}$ is the tail of the hyperarc α;
 - $H_\alpha \triangleq \{ u_{s_2} \} \cup \Delta(s_1; s_2)$ is the set of the heads;
 - $w_\alpha(u_{s_2}) \triangleq 0$; $w_\alpha(v) \triangleq -\epsilon$ for each $v \in \Delta(s_1; s_2)$.

- Consider the expansion $\langle V^\text{Ex}_\Gamma, \Lambda^\text{Ex}_\Gamma \rangle$ of Γ. Then, $H_\epsilon(\Gamma)$ is defined as $H_\epsilon(\Gamma) \triangleq \langle V^\text{Ex}_\Gamma, A_{H_\epsilon} \rangle$, where:
 $$A_{H_\epsilon} \triangleq \Lambda^\text{Ex}_\Gamma \cup \bigcup_{s_1, s_2 \in \Sigma_P} \alpha_\epsilon(s_1; s_2; u).$$
Solving ϵ-DC: reducing from CSTN Γ to HyTN $H_\epsilon(\Gamma)$

HyTN $H_\epsilon(\Gamma)$

Given any $\epsilon \in (0, +\infty)$ and any CSTN $\Gamma = \langle V, A, L, O, O^V, P \rangle$, a corresponding HyTN denoted by $H_\epsilon(\Gamma)$ can be defined as follows:

- For every scenarios $s_1, s_2 \in \Sigma_P$ and every event $u \in V_{s_1,s_2}^+$, define a hyperarc $\alpha = \alpha_\epsilon(s_1; s_2; u)$ as $\alpha_\epsilon(s_1; s_2; u) \triangleq \langle t_\alpha, H_\alpha, w_\alpha \rangle$, where:
 - $t_\alpha \triangleq u_{s_1}$ is the tail of the hyperarc α;
 - $H_\alpha \triangleq \{u_{s_2}\} \cup \Delta(s_1; s_2)$ is the set of the heads;
 - $w_\alpha(u_{s_2}) \triangleq 0$; $w_\alpha(v) \triangleq -\epsilon$ for each $v \in \Delta(s_1; s_2)$.

- Consider the expansion $\langle V^{Ex}_\Gamma, \Lambda^{Ex}_\Gamma \rangle$ of Γ.

Then, $H_\epsilon(\Gamma)$ is defined as $H_\epsilon(\Gamma) \triangleq \langle V^{Ex}_\Gamma, A_{H_\epsilon} \rangle$, where:

$$A_{H_\epsilon} \triangleq \Lambda^{Ex}_\Gamma \cup \bigcup_{s_1,s_2 \in \Sigma_P} \alpha_\epsilon(s_1; s_2; u).$$
Given any $\epsilon \in (0, +\infty)$ and any CSTN $\Gamma = \langle V, A, L, O, O V, P \rangle$, a corresponding HyTN denoted by $\mathcal{H}_\epsilon(\Gamma)$ can be defined as follows:

- For every scenarios $s_1, s_2 \in \Sigma_P$ and every event $u \in V^+_{s_1, s_2}$, define a hyperarc $\alpha = \alpha_\epsilon(s_1; s_2; u)$ as $\alpha_\epsilon(s_1; s_2; u) \triangleq \langle t_\alpha, H_\alpha, w_\alpha \rangle$, where:
 - $t_\alpha \triangleq u_{s_1}$ is the tail of the hyperarc α;
 - $H_\alpha \triangleq \{u_{s_2}\} \cup \Delta(s_1; s_2)$ is the set of the heads;
 - $w_\alpha(u_{s_2}) \triangleq 0$; $w_\alpha(v) \triangleq -\epsilon$ for each $v \in \Delta(s_1; s_2)$.

- Consider the expansion $\langle V^{\text{Ex}}_\Gamma, \Lambda^{\text{Ex}}_\Gamma \rangle$ of Γ.
 Then, $\mathcal{H}_\epsilon(\Gamma)$ is defined as $\mathcal{H}_\epsilon(\Gamma) \triangleq \langle V^{\text{Ex}}_\Gamma, \mathcal{A}_{\mathcal{H}_\epsilon} \rangle$, where:

\[
\mathcal{A}_{\mathcal{H}_\epsilon} \triangleq \Lambda^{\text{Ex}}_\Gamma \cup \bigcup_{s_1, s_2 \in \Sigma_P} \bigcup_{u \in V^+_{s_1, s_2}} \alpha_\epsilon(s_1; s_2; u).
\]
Solving ϵ-DC: reducing from CSTN Γ to HyTN $H_\epsilon(\Gamma)$

HyTN $H_\epsilon(\Gamma)$

Given any $\epsilon \in (0, +\infty)$ and any CSTN $\Gamma = \langle V, A, L, O, O V, P \rangle$, a corresponding HyTN denoted by $H_\epsilon(\Gamma)$ can be defined as follows:

- For every scenarios $s_1, s_2 \in \Sigma_P$ and every event $u \in V_{s_1,s_2}^+$, define a hyperarc $\alpha = \alpha_\epsilon(s_1; s_2; u)$ as $\alpha_\epsilon(s_1; s_2; u) \triangleq \langle t_\alpha, H_\alpha, w_\alpha \rangle$, where:
 - $t_\alpha \triangleq u_{s_1}$ is the tail of the hyperarc α;
 - $H_\alpha \triangleq \{u_{s_2}\} \cup \Delta(s_1; s_2)$ is the set of the heads;
 - $w_\alpha(u_{s_2}) \triangleq 0$; $w_\alpha(v) \triangleq -\epsilon$ for each $v \in \Delta(s_1; s_2)$.

- Consider the expansion $\langle V_{\Gamma}^{Ex}, \Lambda_{\Gamma}^{Ex} \rangle$ of Γ.
 Then, $H_\epsilon(\Gamma)$ is defined as $H_\epsilon(\Gamma) \triangleq \langle V_{\Gamma}^{Ex}, A_{H_\epsilon} \rangle$, where:

$$A_{H_\epsilon} \triangleq \Lambda_{\Gamma}^{Ex} \cup \bigcup_{s_1, s_2 \in \Sigma_P, u \in V_{s_1, s_2}^+} \alpha_\epsilon(s_1; s_2; u).$$
Solving ϵ-DC: reducing from CSTN Γ to HyTN $\mathcal{H}_\epsilon(\Gamma)$

HyTN $\mathcal{H}_\epsilon(\Gamma)$

Given any $\epsilon \in (0, +\infty)$ and any CSTN $\Gamma = \langle V, A, L, O, O V, P \rangle$, a corresponding HyTN denoted by $\mathcal{H}_\epsilon(\Gamma)$ can be defined as follows:

- For every scenarios $s_1, s_2 \in \Sigma_P$ and every event $u \in V_{s_1, s_2}$, define a hyperarc $\alpha = \alpha_\epsilon(s_1; s_2; u)$ as $\alpha_\epsilon(s_1; s_2; u) \triangleq \langle t_\alpha, H_\alpha, w_\alpha \rangle$, where:
 - $t_\alpha \triangleq u_{s_1}$ is the tail of the hyperarc α;
 - $H_\alpha \triangleq \{ u_{s_2} \} \cup \Delta(s_1; s_2)$ is the set of the heads;
 - $w_\alpha(u_{s_2}) \triangleq 0$; $w_\alpha(v) \triangleq -\epsilon$ for each $v \in \Delta(s_1; s_2)$.

- Consider the expansion $\langle V_{\Gamma}^{\text{Ex}}, \Lambda_{\Gamma}^{\text{Ex}} \rangle$ of Γ. Then, $\mathcal{H}_\epsilon(\Gamma)$ is defined as $\mathcal{H}_\epsilon(\Gamma) \triangleq \langle V_{\Gamma}^{\text{Ex}}, A_{\mathcal{H}_\epsilon} \rangle$, where:

$$A_{\mathcal{H}_\epsilon} \triangleq \Lambda_{\Gamma}^{\text{Ex}} \cup \bigcup_{s_1, s_2 \in \Sigma_P} \alpha_\epsilon(s_1; s_2; u).$$
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
Theorem (CSTNs and HyTNs)

Given any CSTN $\Gamma = \langle V, A, L, O, O V, P \rangle$, there exists a sufficiently small real number $\epsilon \in (0, +\infty)$ such that Γ is dynamically-consistent if and only if $H_\epsilon(\Gamma)$ is consistent.

Moreover, $H_\epsilon(\Gamma)$ has at most $|V_{H_\epsilon}| \leq |\Sigma_P| |V|$ nodes,

$|A_{H_\epsilon}| = O(|\Sigma_P| |A| + |\Sigma_P|^2 |V|)$ hyperarcs, and it has size at most $m_{A_{H_\epsilon}} = O(|\Sigma_P| |A| + |\Sigma_P|^2 |V| |P|)$.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs

C. Comin and R. Rizzi
Pseudocode of the Algorithm

Algorithm 1: check_CSTN-ε-DC(Γ = ⟨V, A, L, O, OV, P⟩, ε = N / D)

1: \(\mathcal{H}_\varepsilon(\Gamma) \leftarrow \text{construct}_\mathcal{H}(\Gamma, \varepsilon); \)
2: \textbf{foreach} \((A = \langle t_A, H_A, w_A \rangle \in \mathcal{A}_{\mathcal{H}_\varepsilon(\Gamma)} \text{ AND } h \in H_A)\) \textbf{do}
3: \quad \(w_A(h) \leftarrow D \cdot w_A(h); \) // scale weights to \(Z \)
4: \textbf{end}
5: \(\phi \leftarrow \text{check_HyTN-consistency}(\mathcal{H}_\varepsilon(\Gamma)); \)
6: \textbf{if} \((\phi \text{ is a feasible scheduling of } \mathcal{H}_\varepsilon(\Gamma)) \) \textbf{then}
7: \quad \textbf{foreach} \((\text{event node } v \in V_{\mathcal{H}_\varepsilon(\Gamma)})\) \textbf{do}
8: \quad \quad \(\phi(v) \leftarrow \phi(v) / D; \) // re-scale back to size w.r.t \(\varepsilon \)
9: \quad \textbf{end}
10: \textbf{return} \langle \text{YES}, \phi \rangle;
11: \textbf{end}
12: \textbf{else}
13: \quad \textbf{return} \textit{NO};
14: \textbf{end}
Theorem

Let $\Gamma = \langle V, A, L, O, O V, P \rangle$ be a CSTN. Let $\epsilon \triangleq |\Sigma_P|^{-1}|V|^{-1}$.

Then, Γ is dynamically-consistent if and only if Γ is ϵ-dynamically-consistent.

Algorithm 2: check_DC($\Gamma = \langle V, A, L, O, O V, P \rangle$)

1. $\hat{\epsilon} \leftarrow |\Sigma_P|^{-1}|V|^{-1}$;
2. return \texttt{check_CSTN\textparentheses{ϵ}-DC(Γ, $\hat{\epsilon}$)};
Remark

Hyperarc constraints can also be allowed inside the input CSTNs, besides the standard arc constraints.

Thus, the algorithm actually solves a larger family of conditional temporal networks, that one may call: Conditional Hyper Temporal Networks (CHyTNs).
The bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$ is sharp.

- A natural question is whether the lower bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$ can be improved up to $\hat{\epsilon}(\Gamma) = \Omega(|V|^{-1})$...
- ... this would improve the time complexity by a factor $|\Sigma_P|$.
- However, the following theorem shows that this is not the case by exhibiting a CSTN for which $\hat{\epsilon}(\Gamma) = 2^{-\Omega(|P|)}$.
- This proves that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma_P|^{-1} |V|^{-1}$ is (almost) sharp.

Theorem

For each $n \in \mathbb{N}_0$ there exists a CSTN Γ^n such that

$$\hat{\epsilon}(\Gamma^n) < 2^{-n+1} = 2^{-|P^n|/3+1},$$

where P^n is the set of boolean variables of Γ^n.
The bound $\hat{\epsilon}(\Gamma) \geq |\Sigma P|^{-1} |V|^{-1}$ is sharp.

- A natural question is whether the lower bound $\hat{\epsilon}(\Gamma) \geq |\Sigma P|^{-1} |V|^{-1}$ can be improved up to $\hat{\epsilon}(\Gamma) = \Omega(|V|^{-1})$...
- ... this would improve the time complexity by a factor $|\Sigma P|$.
- However, the following theorem shows that this is not the case by exhibiting a CSTN for which $\hat{\epsilon}(\Gamma) = 2^{-\Omega(|P|)}$.
- This proves that the bound $\hat{\epsilon}(\Gamma) \geq |\Sigma P|^{-1} |V|^{-1}$ is (almost) sharp.

Theorem

For each $n \in \mathbb{N}_0$ there exists a CSTN Γ^n such that

$$\hat{\epsilon}(\Gamma^n) < 2^{-n+1} = 2^{-|P^n|/3+1},$$

where P^n is the set of boolean variables of Γ^n.

A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi 37/41
How Γ^n looks like
How Γ^n looks like

A Singly-Exponential Time DC-Checking of CSTNs via MPGs
C. Comin and R. Rizzi
How Γ^n looks like
Conclusion

Future Works and Open Problems

- Is it possible to extend the HyTN/MPG approach to check the dynamic-controllability of CSTNs with Uncertainty?
- Conduct an in-depth experimental evaluation.
- Is the DC-checking of CSTNs (decision problem) in PSPACE?
- Is it PSPACE-hard? Is it complete for some natural complexity class?
Thank you.

Thank you for your attention.

